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MEASURES OF DISPERSION
 In the preceding section we introduced three types of 

average values for a data set:
Mean
Median
Mode

However, some characteristics of a set of data may not 
be evident from an examination of averages.



MEASURES OF DISPERSION

Consider a soft-drink dispensing machine that 
should dispense 8 oz of your selection into a cup.

The following table shows data for two of these 
machines:

MACHINE 1 MACHINE 2
8.68 8.21
6.73 7.50

10.39 7.55
5.95 8.32
8.25 8.42

𝑥̅𝑥 = 𝑥̅𝑥 =8.0 8.0



MEASURES OF DISPERSION
 The mean data value for each machine is 8 oz. 
 However, look at the variation in data values for Machine 1. 
 The quantity of soda dispensed is very inconsistent – in some cases the 

soda machine overflows the cup, and in other cases too little soda is 
dispensed.

8.08.0• Machine 1 clearly needs to be adjusted. 
• Machine 2, on the other hand, is working just fine.
• The quantity dispensed is very consistent, with little variation.
• This example shows that average values do not reflect the spread or dispersion

of data.
• To measure the spread of dispersion of data, we must introduce statistical 

values known as the range and the standard deviation.

MACHINE 1 MACHINE 2

8.68 8.21
6.73 7.50

10.39 7.55
5.95 8.32
8.25 8.42

𝑥̅𝑥 = 8.0 𝑥̅𝑥 =8.0



THE RANGE
The range of a set of data values is the difference 

between the greatest data value and the least data 
value.

• Find the range of the numbers of ounces dispensed by Machine 1. 

MACHINE 1

8.68
6.73

10.39

5.95
8.25

The greatest number of ounces 
dispensed is 10.39 and the smallest is 
5.95. The range of the numbers of 
ounces is 10.39 – 5.95 = 4.44 oz.



THE STANDARD DEVIATION
The range of a set of data is easy to compute, but it can 

be deceiving. 
The range is a measure that depends only on the two most 

extreme values, and as such it is very sensitive.

• A measure of dispersion that is less sensitive to extreme 
values is the standard deviation. 

• The standard deviation of a set of numerical data makes 
use of the individual amount that each data value 
deviates from the mean.



THE STANDARD DEVIATION
These deviations, represented by (𝑥𝑥 − 𝑥̅𝑥), are positive when 

the data value x is greater than the mean 𝑥̅𝑥, and are 
negative when x is less than the mean 𝑥̅𝑥. 

The sum of all the deviations (𝑥𝑥 − 𝑥̅𝑥) is 0 for all sets of data.

• This is shown for Machine 2 
data here.

x 𝒙𝒙 − �𝒙𝒙
8.21 8.21 – 8.0 = 0.21
7.50 7.50 – 8.0 = -0.5
7.55 7.55 – 8.0 = -0.45
8.32 8.32 – 8.0 = 0.32
8.42 8.42 – 8.0 = 0.42

Sum of deviations = 0



THE STANDARD DEVIATION

Because the sum of all the deviations of the data values 
from the mean is always 0, we cannot use the sum of the 
deviations as a measure of dispersion for the set of data.

 Instead, the standard deviation uses the sum of the 
squares of the deviations.



STANDARD DEVIATION FOR POPULATIONS AND 
SAMPLES 
 If 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 is a population of n numbers with a mean of μ, then the standard 

deviation of the population is

𝜎𝜎 =
∑ 𝑥𝑥 − 𝜇𝜇 2

𝑛𝑛

• If 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 is a sample of n numbers with a mean of 𝑥̅𝑥, then the 
standard deviation of the sample is

𝑠𝑠 =
∑ 𝑥𝑥 − 𝑥̅𝑥 2

𝑛𝑛 − 1



THE STANDARD DEVIATION
Most statistical applications involve a sample rather 

than a population, which is the complete set of data 
values. 

Sample standard deviations are designated by the 
lowercase letter s.

In those cases in which we do work with a 
population, we designate the standard deviation of 
the population by a σ, which is the lowercase Greek 
letter sigma.
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